pandas is a popular and widely used data analysis and manipulation tool, built on top of Python. It offers data structures and operations for manipulating numerical tables and time series. It is therefore widely used in the ETL (Extraction, Transform & Load) stages of your data analytics pipeline. Depending on the size of your dataset and capabilities of your compute platform, the ETL stages can be a huge bottleneck in your pipeline. It is for this reason that it is crucial that we accelerate this – enter Modin.
Modin enables you to accelerate your pandas workloads across multiple cores and multiple nodes. pandas is not designed to utilize the multiple
cores available on your machine thus resulting in inefficient system utilization and impacting perfomance. This is not the case with Modin as illustrated below
pandas on a multi-core system

Modin on a multi-core system

So, how do you integrate Modin into your pandas workflow?
Well, we first need to install Modin
pip install modin
You can also explicitly install Modin to run on Ray/Dask as shown below
pip install modin[ray] # Install Modin dependencies and Ray to run on Ray
pip install modin[dask] # Install Modin dependencies and Dask to run on Dask
pip install modin[all] # Install all of the above
If you are using the Intel® oneAPI AI Analytics Toolkit (AI Kit), Modin should be available in the aikit-modin conda environment as shown below

The most crucial bit to note about Modin is how to integrate it into your pandas workflow. This is accomplished with a single line of code as shown below
import modin.pandas as pd
Note that if you are using Dask/Ray as a compute engine, you will need to initialize this first as shown below:
import os
os.environ["MODIN_ENGINE"] = "ray" # Modin will use Ray
os.environ["MODIN_ENGINE"] = "dask" # Modin will use Dask
import modin.pandas as pd
With the setup done, let’s now get to the performance comparison for Modin vs pandas. For this tests, the CPU is the 24 core Intel® Xeon® Gold 6252 Processor as shown below

First things, first, import Modin

We will now generate a synthetic dataset using NumPy to use with Modin and save it to a CSV.

Now we will convert the ndarray into a Pandas dataframe and display the first five rows. For pandas, the dataframe is being stored as pandas_df
and for Modin, the same dataframe is being stored as modin_df
.
With pandas

With Modin

In the above case, you notice that pandas took 11.7s while Modin took 2.92 second. Modin thus gives us a 4X speedup for this task!
Now let’s compare various function calls in pandas vs Modin


As you can see , Modin offers a significant perfomance boost compared to pandas and this will accelerate the ETL stage of your data analytics pipeline.